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A Duhamel approach for the Langevin equations with holonomic constraints
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To simulate polymer flows in microscale environments we have developed a numerical method that couples stochastic
particle dynamics with an efficient incompressible Navier–Stokes solver. Here, we examine properties of the particle solver
alone. We derive a Duhamel-form stochastic particle method for freely jointed polymers and demonstrate that it achieves
2-order weak convergence and 3/2-order strong convergence with holonomic constraints. For time steps approaching the
1=g relaxation time, our method displays greatly enhanced stability relative to comparable solvers based on linearised
dynamics. Under these same conditions, our method has solution errors that are approximately six orders of magnitude
smaller than that for the linearised algorithm.

Keywords: stochastic particle dynamics; RATTLE; particle-fluid coupling

1. Introduction

The dynamics of a continuum fluid with discrete embedded

polymers is important for certain microfluidic applications

(e.g. so-called lab-on-a-chip devices used for biochemical

analysis and detection) and for modelling viscoelastic

phenomena in the dilute limit. Towards this end, we

proposed a fluid–particle coupling strategy [12] that uses

Brownian dynamics to approximate molecular-level fluid–

polymer interactions. In subsequent work (e.g. [7]) the time

stability of the scheme was improved, and constraints such

as the non-crossing constraint for polymer–polymer

interaction were considered. In this short paper, we address

the accuracy of our scheme. We work here in the framework

of a freely-jointed chain (no polymer–polymer inter-

actions), we consider the fluid velocity field to be

prescribed, and we do not consider any rigid domain

boundaries. In the context of rigid constraint dynamics (vs.

soft penalty method constraints), these omitted interactions

will diminish the order of the local discretisation error.

Recently, [13] proposed a weak second-order stochas-

tic particle dynamics approach that is broadly similar to

ours as described in [7,12]. Our approach differs from

theirs in our handling of the fluid–particle coupling, and

our use of a Duhamel type discretisation that recovers

certain limiting behaviour exactly.

The main points of this paper are two. First, the

methods of stochastic ODE analysis commonly used for

these problems employ a linearisation of the ODEs. We

derive here an alternative formulation of such methods,

which does not rely on linearisation. We demonstrate the

advantages of this new approach for stability and accuracy

in the large time-step limit. Second, we go beyond the

usual weak analysis to show the strong rate of

convergence. Accuracy in the weak sense relies on a

large ensemble of stochastic paths – akin to the reliance on

the ergotic hypothesis by molecular dynamics (MD)

theory. Our motivating application is a multiscale

simulation that combines polymer dynamics with fluid

dynamics. Owing to the large computational expense of

the fluid solvers, it is impractical to simulate a large

enough ensemble of states for the weak measure of error to

apply. By contrast, the strong sense of error applies to

the given paths, i.e. for any operational definition of the

underlying stochastic processes; a second-order strong

method is reasonably expected to attain second-order

accuracy. We show that our approach is weak 2-order

accurate and order 3/2 strong with holonomic constraints.

We model a polymer as a collection of coupled point

masses, each subject to the Langevin equation of motion

€xa ¼ gðu2 _xaÞ þ
1

ma

FðxaÞ þ sjaðtÞ: ð1Þ

Here, x ¼ xðtÞ is the position of the ath particle with mass

ma; u is fluid velocity; F(x) is the interparticle force; g . 0

is the friction coefficient; and j(t) is a white noise

representing stochastic thermal bombardment by the

solvent. The constant s is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT=ma

p
with kB

being Boltzmann’s constant and T the temperature.

In this work, we will use Kramers’ polymer model,

which represents a polymer as points governed by (1) with

the interparticle force F chosen to enforce the constraint
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of fixed interparticle spacing. The general idea is to add

into equations of motion constraint forces that can be

expressed as:

Ga ¼ 2
X
b

labðtÞ7auab; ð2Þ

uab ¼
1

2
kxa 2 xbk

2
2 a2

� �
¼ 0; ð3Þ

where particles of index b are neighbours of particle a;

lab are Lagrange multipliers chosen to satisfy the

constraints; and a ¼ const. is the spacing between

adjacent particles.

2. Numerical method

A numerical method for the integration of (1) was given

without proof in [12]. Here, a derivation of those equations

is given. We begin by expressing the second-order SDE as

a system of first-order equations in the Duhamel form:

dxðtÞ ¼ e2gtzðtÞdt;

dzðtÞ ¼ gegtuðt; xðtÞÞdt þ segtdW; ð4Þ

and

xðtÞ ¼ xð0Þ þ

ðt
0

e2gszðsÞds; ð5Þ

zðtÞ ¼ zð0Þ þ

ðt
0

gegsuðs; xðsÞÞdsþ

ðt
0

segsdWs;

where z ¼ vegt; WðtÞ is a standard Weiner process; and

dW ¼ jdt.
We then expand our equations of motion in an Itô–

Taylor series, using the Itô calculus for stochastic ODEs

[4]:

Y ¼ Uðt;XðtÞÞ; ð6Þ

dXðtÞ ¼ f ðtÞdt þ gðtÞdW ;

dYðtÞ ¼
›U

›t
þ

›U

›X
f ðtÞ þ

1

2

›2U

›X 2
g2ðtÞ

� �
dt þ

›U

›X
gdW :

Application of this stochastic chain rule requires care to

account for all dependence on stochastic variables. In real

systems, the fluid u is driven by a nonlinear stochastic

coupling. Additionally, every fluid element undergoes

thermal fluctuation, whether expressed explicitly as a

Brownian force or not. However, the average magnitude of

such fluctuations in a given volume scales as the inverse of

the number of atoms in that volume. At the scales of length

with which we are concerned, the continuum fluid motion

u is smooth. Thus, in our analysis, the stochastic

dependence of u is through the particle position x only:

u ¼ uðt; xðtÞÞ.
With this assumption, application of the Itô formula to

the W-dependent integrands of (5) gives:

e2gszðsÞ ¼ zð0Þ þ

ðs
0

2ge2gs1zðs1Þ þ guðs1; xðs1ÞÞ
� �

ds1

þ s

ðs
0

dWs1 ; ð7Þ

gegsuðs; xðsÞÞ ¼ guð0; xð0ÞÞ þ

ðs
0

g2egs1uðs1; xðs1ÞÞ
�

þgegs1
Duðs1; xðs1ÞÞ

Ds1

�
ds1:

Substituting expansions (7) into (5) gives:

xðtÞ ¼ xð0Þ þ tzð0Þ þ

ðt
0

ðs
0

2ge2gs1zðs1Þ þ guðs1; xðs1ÞÞ
� �

� ds1dsþ s

ðt
0

ðs
0

dWs1ds; ð8Þ

zðtÞ ¼ zð0Þ þ gtuð0; xð0ÞÞ þ

ðt
0

ðs
0

g2egs1uðs1; xðs1ÞÞ
�

þgegs1
Duðs1; xðs1ÞÞ

Ds1

�
ds1dsþ s

ðt
0

egsdWs;

where

D

Dt
¼

›

›t
þ ðvðtÞ�7Þ ¼

›

›t
þ e2gtðzðtÞ�7Þ

is the material derivative. Applying the Itô formula (6)

again, now to the integrands of (8), gives, after

simplification:

xðtÞ ¼ xð0Þ þ tzð0Þ þ
gt 2

2
½uð0; xð0ÞÞ2 zð0Þ�

þ g

ðt
0

ðs
0

ðs1
0

Duðs2; xðs2ÞÞ

Ds2
þ ge2gs2zðs2Þ

�

2guðs2; xðs2ÞÞ
�
ds2ds1dsþ s

ðt
0

ðs
0

dWs1ds

2 gs

ðt
0

ðs
0

ðs1
0

dWs2ds1ds2;
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zðtÞ ¼ zð0Þ þ gtuð0; xð0ÞÞ þ
t 2

2
g2uð0; xð0ÞÞ
�

þg
Duð0; xð0ÞÞ

Dt

�
þ

ðt
0

ðs
0

ðs1
0

g3egs2uðs2; xðs2ÞÞ
�

þ2g2egs2
Duðs2; xðs2ÞÞ

Ds2
þ gegs2

D 2uðs2; xðs2ÞÞ

Ds22

�

� ds2ds1dsþ sg

ðt
0

ðs
0

ðs1
0

ð7uðs2; xðs2ÞÞÞ · dWs2ds1ds

þ s

ðt
0

egsdWs: ð9Þ

In the notation of [4], repeated application of the

Itô chain rule to the x equation will give rise to multiple

integrals of the form:

Ið1;0Þ ¼

ðt
0

ds0

ðs0
0

dWs1 ;
ð10Þ

Ið1;0;0Þ ¼

ðt
0

ds0

ðs0
0

ds1

ðs1
0

dWs2 ;

. . .

Ið1; 0; . . . ; 0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n terms

¼

ðt
0

ds0

ðs0
0

ds1· · ·

ðsn22

0

dWsn21
:

It can be shown ([4], Proposition 5.2.3) that

Ið1;0Þ ¼

ðt
0

ðt2 sÞdWs0 ; ð11Þ

Ið1;0;0Þ ¼
1

2

ðt
0

ðt2 sÞ2dWs0 ;

. . .

Ið1; 0; . . . ; 0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n terms

¼
1

ðn2 1Þ!

ðt
0

ðt2 sÞn21dWs0 :

It follows that repeated application of the Itô chain rule to

the x equation will converge to a single stochastic integral:

s

g

ðt
0

½12 e2gðt2sÞ�dWs: ð12Þ

The Itô–Taylor series expansion therefore gives the

effective stochastic position and velocity terms:

Rx ¼
1

g

ðt
0

½12 e2gðt2sÞ�dWs; ð13Þ

Rv ¼

ðt
0

e2gðt2sÞdWs; ð14Þ

which are simply related [5]

RxðtÞ ¼

ðt
0

RvðsÞ ds: ð15Þ

These terms have zero mean, and variances for time step h

of:

EðRx^RxÞ ¼ I

ðh
0

½12 e2gðh2sÞ�2

g2
ds ð16Þ

¼ I
2gh2 e22gh þ 4e2gh 2 3

2g3
;

EðRv^RvÞ ¼ I
12 e22gh

2g
; ð17Þ

EðRx^RvÞ ¼ I
ðe2gh 2 1Þ2

2g2
: ð18Þ

Numerically, these stochastic terms are constructed

by assuming Rv ¼

ffiffiffiffiffiffiffiffiffiffiffi
EðR2

vÞ

q
U1, where U1 is a vector of

Gaussian normal deviates. Then, Rx is given by

Rx ¼ b1U1 þ b2U2, where U2 is an independent vector

of normal deviates, and constants b1 and b2 are:

b1 ¼
1

g
tanh

gh

2

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 e22gh

2g

s
;

b2 ¼
1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

2

g
tanh

gh

2

	 
s ð19Þ

in order that Rv and Rx obey (16)–(18).

Taking into account all of the above, and truncating

high-order terms, we can write our integral equations of

motion as:

xðt þ hÞ ¼ xðtÞ þ ½vðtÞ2 uðt; xðtÞÞ�
12 e2gh

g

þ uðt; xðtÞÞhþ sRx; ð20Þ

vðtþ hÞ ¼ vðtÞe2gh þ uðt;xðtÞÞð12 e2ghÞ

þ _uðt;xðtÞÞ
e2gh 2 1þ gh

g
þsRv;

ð21Þ

where _u is shorthand for Du=Dt. Equation (20) is a special

case of the result of Ermak and McCammon [3].

These discrete integral equations correspond exactly

to the analytical solution of (4) under the assumptions of

B. Kallemov et al.442
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(i) constant uniform u, (ii) the absence of holonomic

constraints and (iii) the fidelity of moments Rx and Rv to

the assumed stochastic path. The recovery of this exact

limit through the Duhamel form is the principal advantage

of our method, and we will show that it provides stability

in the limit hg . 1 and helps control error in that limit.

By the theorem of [8], the omission of stochastic terms

Oðh5=2Þ and deterministic terms Oðh3Þ in our velocity

equation gives a theoretical order of accuracy of 2 strong

and 2 weak for systems (20) and (21).

Adding constraint forces into our integrator (20) and

(21) leads to the following:

xðtþ hÞ ¼ xðtÞ þ ½vðtÞ2 uðt;xðtÞÞ�
12 e2gh

g

þ uðt;xðtÞÞhþsRx þ
1

m
G; ð22Þ

vðt þ hÞ ¼ vðtÞe2gh þ uðt; xðtÞÞð12 e2ghÞ

þ _uðt; xðtÞÞ
e2gh 2 1þ gh

g

þ sRv þ
1

m

1

h
½G* þG�; ð23Þ

where G is given by (2) to ensure that condition (3) is

obeyed at time t þ h. G* is computed in an analogous way

to enforce condition:

_uabðxðt þ hÞÞ ¼ ð_xa 2 _xbÞ · ðxa 2 xbÞ ¼ 0; ð24Þ

at time t þ h. The force director 7xu for G is DxðtÞ and the

force director 7x
_u for G* is Dxðt þ hÞ. The Lagrange

multipliers are determined by the RATTLE algorithm [1]

or by the method of [2].

3. Results and conclusions

We demonstrate the convergence of our method in the

strong and weak senses by the following procedures.

The weak rate of convergence pw of a process y is defined

relative to an exact solution ~y by

EðyðtÞÞ2 Eð~yðtÞÞj j # Chpw : ð25Þ

For our problem we do not have access to the exact

solution, so we instead estimate pw by Richardson

extrapolation using the differences of solutions computed

with different time steps h:

rð2h=hÞa ; Eðy2hðtÞÞ2 EðyhðtÞÞ
�� ��; ð26Þ

and the rate of convergence is given by:

p ¼ log2
rð4h=2hÞa

r
ð2h=hÞ
a

	 

: ð27Þ

For the weak measure of error, the particular paths (as

defined by the moments Rx and Rv) with resolutions h and

2h can be constructed independently.

Error in the strong sense is defined as

EkyðtÞ2 ~yðtÞk # Chps ; ð28Þ

where k�k is some norm of the error over the paths

sampled. We use the L2 or RMS norm defined by

L2ðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
n!1

1

n

Xn
i¼1

j f ij
2

s
: ð29Þ

As with the weak measure of error, we use Richardson

extrapolation to deduce the rate ps. However, in contrast to

the weak measure, the computation with step 2h must be

consistent with that at step h, as it is assumed that they are

moments of the same underlying process. To enforce this

consistency, we compute initially a sequence of moments

ðRxÞ
n
h and ðRvÞ

n
h at the finest scale time scale h.

The sequence of moments ðRvÞ
n
2h, etc., are reconstructed

from the sequence ðRvÞ
n
h by a coarsening procedure guided

by the integral definition:

ðRvÞ
n
2h ¼ e22hgðnþ1Þ

ððnþ1Þð2hÞ

nð2hÞ

egsdWs

¼ e2ghe2hgð2nþ1Þ

ðð2nþ1Þh

nð2hÞ

egsdWs

þ e22hgðnþ1Þ

ððnþ1Þð2hÞ

ð2nþ1Þh

egsdWs

¼ e2ghðRvÞ
2n
h þ ðRvÞ

2nþ1
h : ð30Þ

For Rx the same procedure yields

ðRxÞ
n
2h ¼ ðRxÞ

2n
h þ ðRxÞ

2nþ1
h þ

12 e2gh

g
ðRvÞ

2n
h : ð31Þ

These coarsening formulae are used recursively to

construct moments for resolutions 4h, etc., consistent

with all higher resolution sequences.

Our first calculation demonstrates the advantage of the

Duhamel form when gh is not negligible. We assume a

weakly varying flow field ui ¼ 1023 cosð1023xiÞ (MKS),

and choose a ¼ kDxk2 ¼ 7 £ 1026 m, g ¼ 1010 s21 and

s ¼ 5 £ 103 m=s3=2 – parameters roughly corresponding

to l-phage DNA in a Kramers bead–rod abstraction.

The initial conditions are x00 ¼ 0, x0i ¼ x0i21 þ a1=
ffiffiffi
3

p

and v0i ¼ uðx0i Þ. The simulation is run to 1029 s, so gh ¼

1021 at the coarsest level of simulation. The calculation in

3D uses six particles connected in a linear topology.

Expectations are assembled from 104 independent paths.

Our stochastic terms are computed using uniformly

distributed pseudorandom numbers generated by the
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Mersenne Twister algorithm [6], converted to Gaussian

normal deviates by the Box–Muller algorithm.

We compute weak and strong measures of error for our

method, and for the linearised algorithm of Vanden-

Eijnden and Ciccotti [13], using the same parameters and

initial conditions. The results for all 18 coordinates and 18

velocities are presented in Figures 1–4.

Note that the Duhamel formulation leads to errors that

are approximately six orders of magnitude smaller than

that for the linearised method.

One reason our method displays significantly lower

error as gh < 1 can be appreciated by comparing the

(co)variances in the Duhamel form (16)–(18) with the

equivalent results in the linearised regime:

E

ðh
0

ds

ðs
0

dW

	 
2

¼
1

3
h3; ð32Þ

E

ðh
0

dW

	 
2

¼ h; ð33Þ

E

ðh
0

dW

	 
 ðh
0

ds

ðs
0

dW

	 
	 

¼

1

2
h2: ð34Þ

In the linearised versions, all of these stochastic terms

grow without bound as h increases. In the Duhamel form,

the variance of Rx grows linearly with h when gh @ 1 –

the correct diffusion limit [3], versus as h3 in the linearised

result. However, the variance of Rv (17) and the

covariance EðRvRxÞ (18) saturate, with asymptotic values

of 1=ð2gÞ and 1=ð2g2Þ, respectively.

The effect of the unattenuated growth of these

stochastic terms in the linearised equations is to compute

velocity values subject to unphysically large variation. As a

practical matter, this causes large violations of the

constraints in each time step, and the linearised algorithm
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Figure 1. Comparison of linearised and Duhamel form results:
weak coordinate error.
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strong velocity error.
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fails for gh < 1 (with the parameters described above)

as a consequence of a failure of the nonlinear Lagrange

force calculation to converge.

Another way to appreciate the time-step restriction on

the linearised method is to consider velocity fluctuations

for the simple ODE

_v ¼ 2gvþ sj; ð35Þ

which corresponds to our velocity equation for a single

particle in a quiescent fluid, u ¼ 0. The mean squared

velocity kvk2 is given by the equipartition theorem to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=2m

p
or ðs=2Þ

ffiffiffiffiffiffiffiffi
3=g

p
. A discretisation of (35) by the

linearised method of Vanden-Eijnden and Ciccotti carries

a local discretisation error of jvjg3h2=6 from the

deterministic terms alone, and has a Lipschitz constant

approximated by gj12 gh=2j. The global discretisation

error may be approximated at time T by [10]

eðTÞ #
jvjg3h2

6

egj12gh=2jT 2 1

gj12 gh=2j
: ð36Þ

A condition for the suitability of the linearised approach is

the requirement that ep kvk21: the velocity solution error

should be less than the average thermal velocity.

Approximating jvj by kvk21, this inequality simplifies

somewhat to

ðghÞ2

6

ej12ðghÞ=2jðgTÞ 2 1

j12 ðghÞ=2j
p 1;

which requires ghp 1 for any T. For our model problem

of l-phage DNA, g < 1010=s, which means that the

linearised technique yields acceptable results only for time

steps significantly smaller than 10210 s. This restriction is

of no concern for atomic-scale MD simulations, where

characteristic time steps are typically of order 10215 s, but

begins to be an issue for some discrete particle dynamics

(DPD) simulations, where time steps approach 10211 s

[11]. We are primarily concerned with coarser scale

simulations, where fluid dynamics are governed by

characteristic time steps of 1023s, and the discretisation

errors associated with a linearised approach are wholly

unacceptable.

Because in the Duhamel form some of our stochastic

terms saturate as gh < 1, the asymptotic convergence

limit is only seen for gh , 1. With the physically based

parameters used above, it is difficult to observe the

theoretical asymptotic behaviour: the algorithm errors for

these parameters and gh , 1 are comparable with the

numerical errors. Accordingly, to display the algorithm

errors, we use the completely artificial parameters a ¼ 1,

g ¼ 1 and s ¼ 1021 with the fluid velocity field u and

initial conditions as described in the previous example.

We compute to time T ¼ 2 (gT ¼ 2), again with 104 paths.

The average weak and strong errors over the 18 respective

variables are presented in Figures 5–8 and in Tables 1–4

with the rates of convergence. We observe 2-order

accuracy in the weak sense and 1.5-order accuracy in the

strong sense, for all variables.
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Figure 5. Convergence in weak coordinate error.
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Figure 6. Convergence in weak velocity error.
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Figure 7. Convergence in strong coordinate error.
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The second-order weak convergence, with holonomic

constraints, can be explained by the analysis of [13].

However, it is noteworthy that the definition of second-

order weak convergence differs amongst authors (cf. [4,9]),

and a numerical test of the sort we present here does not

verify that a given method is compatible with either

definition. This is because jEðyÞ2 Eð~yÞj and jEðyþWÞ2

Eð~yÞj are indistinguishable, although y and yþW

differ fundamentally in the lowest order of stochastic

contribution. This dilemma does not occur for the strong

sense of error.

The lower order observed in the strong sense can be

understood as follows. If one expressed the constraint

force as a continuous function of all xðtÞ; vðtÞ, and

expanded that constraint force in the Itô–Taylor fashion to

second-order accuracy, terms proportional to

e2gh

ðh
0

e2gs0ds0

ðs0
0

e2gs1ds1; ð37Þ

e2gh

ðh
0

ds0

ðs0
0

egs1dWs1 ; ð38Þ

e2gt

ðt
0

e2gs0ds0

ðs0
0

egs1dWa
s1

ðs1
0

egs2dWb
s2
; ð39Þ

e2gt

ðt
0

egs0dWa
s0

ðs0
0

e2gs1ds1

ðs1
0

egs2dWb
s2
; ð40Þ

are discovered that are absent in the derivation of this

paper. The first of these new integrals is deterministic and

arises from a factor like ›2U=›X 2 in (6). It is accounted for

by an enforcement of constraints after a time step in the

analysis of [13]. The second term equals Rx to Oðh3=2Þ,

so to that order might be accounted for through the

constraints. However, (39) and (40) are entirely new and

cannot be expressed in terms of Rx;Rv, and therefore their

omission in the explicit part of Equations (22) and (23)

cannot be compensated through the Lagrange forces in

(22) and (23). By the theorem of [8], terms of Oðh2Þ must
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Figure 8. Convergence in strong velocity error.

Table 2. Average weak velocity error and rate.

N / 1/h Error h/2h Rate

2048 1.95 £ 1029

1024 7.53 £ 1029 1.95
512 2.48 £ 1028 1.72
256 9.29 £ 1028 1.91
128 3.65 £ 1027 1.97
64 1.46 £ 1026 2.00
32 5.77 £ 1026 1.98
16 2.16 £ 1025 1.90
8 8.06 £ 1025 1.90
4 2.68 £ 1024 1.73
2 5.38 £ 1024 1.00

Table 1. Average weak coordinate error and rate.

N / 1/h Error h/2 h Rate

2048 2.89 £ 1029

1024 1.12 £ 1028 1.96
512 3.96 £ 1028 1.82
256 1.57 £ 1027 1.99
128 6.07 £ 1027 1.95
64 2.40 £ 1026 1.98
32 9.30 £ 1026 1.95
16 3.33 £ 1025 1.84
8 1.13 £ 1024 1.77
4 3.16 £ 1024 1.48
2 1.28 £ 1023 2.02

Table 3. Average strong L2 coordinate error and rate.

N / 1/h Error h/2 h Rate

2048 1.07 £ 1027

1024 3.03 £ 1027 1.50
512 8.63 £ 1027 1.51
256 2.50 £ 1026 1.54
128 7.36 £ 1026 1.56
64 2.23 £ 1025 1.60
32 6.92 £ 1025 1.64
16 2.17 £ 1024 1.65
8 6.61 £ 1024 1.60
4 1.75 £ 1023 1.41
2 5.47 £ 1023 1.64

Table 4. Average strong L2 velocity error and rate.

N / 1/h Error h/2 h Rate

2048 8.58 £ 1028

1024 2.43 £ 1027 1.50
512 6.83 £ 1027 1.49
256 1.95 £ 1026 1.51
128 5.64 £ 1026 1.53
64 1.66 £ 1025 1.55
32 4.95 £ 1025 1.58
16 1.53 £ 1024 1.63
8 4.87 £ 1024 1.67
4 1.56 £ 1023 1.67
2 3.96 £ 1023 1.35
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be included in a strong second-order method, hence the

algorithm (22) and (23) is at most Oðh3=2Þ.

Work to develop a strong second-order method for

the Langevin equations with holonomic constraints is in

progress.
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